Surgical Intervention for the Treatment of Multiple Glioblastomas A Retrospective observational study.

Muhammad Shoaib¹, Sajid Khan², Syed Nasir Shah³ ImranUllah⁴,Bakth Jamal⁵

¹ Consultant Neurosurgeon, Muhammad Teaching Hospital, Peshawar, Pakistan.
² Consultant Neurosurgeon, Prime Hospital, Peshawar, Pakistan.
³ Consultant neurosurgeon DHQ Hospital, Mardan, Pakistan
⁴ Consultant Neurosurgeon, Saíd Teaching Hospital, Swat, Pakistan.
⁵ Assistant Professor, Neurosurgeon, Naseer Ullah Babar Hospital, Peshawar, Pakistan

Corresponding Author: Syed Nasir Shah
Email: nsanisirshah169@yahoo.com

ABSTRACT

Background: This trial tested surgery therapy for numerous glioblastomas. A multi-centre study enlisted 32 multiple GBM cases. The outcomes were overall survival, progression-free survival, time to return, and quality of life. Biopsy, debulking, and excision were performed. Overall survival was 13.5 months, and progression-free survival was 8.5 months. Postoperative quality of life improved considerably. Multiple glioblastomas can be treated safely and effectively with surgery.

Objective: This study aims to evaluate the outcomes of glioblastoma patients’ surgical resections.

Study design: A Retrospective observational study.
Place and duration of study: department of Neurosurgery LRH Peshawar from Between 05-January 2015 and 05-January 2018

Methods: The research was carried out at MTI LRH Peshawar Hospital. To find 30 patients with progressing GB, records for everyone who had a glioblastoma biopsy or had it removed between January 2015 and January 2018 were identified and evaluated retrospectively. The median survival and 90% CI were derived by the Kaplan-Meier method. The multivariate analysis was conducted for age, Karnofsky score, amount of resection, tumour size, and tumour multifocality of survival following the advancement of the disease using the Cox Proportional Risks model.

Results: Patients with advanced illnesses underwent the first known resection. Patients who had not yet had resections had median survival after progression of 10.6 months for them and 4.0 months for them. In multivariable analysis, surgical intervention and KPS 0.70 (HR 0.411) were associated with improved survival after GBM progression. The median overall survival was 13.5 months, with a 90% CI of 8.2 to 18.8 months. The median progression-free survival was 8.5 months, with a 90% CI of 5.3 to 11.7 months. Quality of life scores improved significantly postoperatively.

Conclusions: Operative intervention for progressing Glioblastoma effectively treats the symptoms in the current maximum non-operative treatment, but the survival of the patients is restricted. More research is needed to determine if surgical surgery can lengthen post-progressive endurance in people with progressive GB.

Keywords: Surgical Intervention, Treatment, Multiple Glioblastomas

Authors Contribution
MS. Concept & Design of Study, SK Drafting,
SNS, Data Analysis, IU Revising Critically,
BJMS, Final Approval of version

Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License

Received: 28 March 2023
Accepted: 12 July 2023,
Published: 12 August 2023
INTRODUCTION:

Glioblastoma is the most common CNS tumour (GB). GB patients should have a surgical resection. GB patients have a terrible prognosis, with a median survival of 12–16 months. Resection or preliminary clinical enrollment may prevent disease progression\(^1\).

For every 90000 individuals, 4.11 malignant gliomas are diagnosed. Malignant astrocytomas are adults' most common primary CNS tumours. Glioblastoma causes 50-60% of malignant gliomas. As the population ages, the number of patients will climb, peaking in the fifth and sixth decades\(^2\). Headache, focal neurologic impairments, and non-specific alterations, including altered mental state or unusual gait, are frequent GBM symptoms\(^3\). Histogenesis theories categorize malignancies based on microscopic resemblance to probable origin cells, level of differentiation, and tumour size as a prognostic indicator\(^1\,\,2\)—glioblastoma molecular classification\(^4\).

As the quality of life for newly diagnosed and advanced Glioblastoma patients has improved over the last 20 years, tumour removal has become more unavoidable. It is currently performed on 30% of patients with advanced GB\(^3\). Medical intervention during movement may extend life, get tissue for lab examination, enable entrance into a medical phase, or reduce mass impact\(^5\). Postoperative impairments reduce personal pleasure, diminish endurance, or postpone future therapy. Most studies show that resection at advancement improves endurance, with the advantage rising with more resection\(^6\). Many patients were examined and started treatment before the GB\(^5\) guidelines were developed\(^7\). A current study shows that resection during sickness development does not improve survival when the underlying infection is neglected. Only three studies have analyzed disease-progression resection\(^8\). We used a large group of patients with single-centre glioblastoma analyses to determine whether resection would help glioblastoma patients\(^9\).

MATERIAL AND METHODS:

All neurosurgical patients who underwent glioblastoma surgery between January 2015 and January 2018 were noted. We included anybody witha GBM-positive MRI. Initial and progressive glioblastoma patients were tested. Medical procedures and treatments at various clinical centres were included if auditable data (patient notes, pathologic examples, peri-usable imaging) were available. Thirty met these requirements. 8. Examining the medical record structure revealed all relevant information. For this study, researchers gathered data on patient age and gender at the time of analysis, the time since a medical treatment started, the size of the tumour excised during surgery, and a patient's Aronofsky score before surgery (52 or 55). For each patient, we kept note of the dates their tumours started to progress, whether they were many or focused in one location, the dates and kinds of operations conducted at that time, the degree of resection for each craniotomy, and the date of death or the final visit.

STATISTICS ANALYSES:

The accurate test compared binary variables, the Chi-square test compared categorical data, and the sample t-test compared continuous variables. The median and 90% confidence intervals were estimated using the Kaplan-Meier method\(^12\). Post-advanced enduranc e was studied using Cox corresponding risk. The model incorporated the patient's age, KPS score, degree of the first resection, time for the first GBM to develop, number of resections, and degree of resection. Every model factor has a 90% CI (CI). All significant measurements used p 0.05. 11

RESULTS: The first known resection was performed on patients with advanced diseases. Patients who had not yet had resections had a median survival after progression of 10.6 months and 4.0 months for those who had undergone resection. In a multivariable study, better survival following GBM development was linked to surgical intervention and a KPS of 0.70(HR 0.411).
Figures 01 And 02: Glioblastoma tumour development may be seen on this MRI.

Figure No 03 And Figure 04: Glioblastoma Survival Is Shown To Be Inversely Proportional To The Period Between Diagnosis Below is a table outlining the demographics, follow-up visits, and overall survival of patients who had glioblastoma progression. And Death In This Graph. The Molecular Categorization Of Gbm: Classification An Subtypes Of Gbm And The Overlap Between Subtypes Based On Various Categorization Techniques.
Table No 01: properties and the incidence rate (mean)wise = n-30

<table>
<thead>
<tr>
<th>Properties</th>
<th>Incidence rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age(mean)</td>
<td>65 years</td>
</tr>
<tr>
<td>Karnofsky score</td>
<td>90%</td>
</tr>
<tr>
<td>Extent of resection</td>
<td>55%</td>
</tr>
<tr>
<td>Biopsy</td>
<td>20%</td>
</tr>
<tr>
<td>Death</td>
<td>65%</td>
</tr>
<tr>
<td>Clinical intervention</td>
<td>50%</td>
</tr>
<tr>
<td>Follow-up (months)</td>
<td>12 months</td>
</tr>
<tr>
<td>Survival (months)</td>
<td>18 months</td>
</tr>
</tbody>
</table>

DISCUSSION:

No previous study has assessed the survival benefit of progressive tumour resection in a patient group following the first tumour resection (90.2%), with a higher propagation rate (65.1% of those diagnosed) than we did. Even when other confounding factors are included, a GTR is unrelated to longer life following progressive GB excision. KPS — 70, at first advancement, was connected to improved survival. Contrary to several recent studies, a gradual GB resection does not prolong survival. Chaichana et al. found a link between the number of tumours excised and resections. However, it was a retrospective study of patient charts and medical information. Overall poor survival limited the 6-month survival of single-resection patients after initial surgery (6.12 months). Recent data shows that progressive resection may be helpful if GTR or EOR surpasses initial EOR. We've enlarged our sample size to understand post-progressive survival than total survival better. Before aggressive initial resection, gradual resection may have improved survival. Progressive GB resection may not enhance survival time, but it reduces steroid dependency, provides genetic research tissue, and allows patients to participate in clinical trials. This retrospective research has drawbacks. Many patients are missing. Biopsy or pseudoprogression resection patients were not regarded to have progressing disease. These procedures have both morbidity and mortality risks. Molecular tumour characteristics, specifically IDH1 and MGMT methylation status, were not included since test results were unavailable for every patient.

Table No 02: There were two surgically removed (mean-wise) glioblastomas, and the p-value was n-30.

<table>
<thead>
<tr>
<th></th>
<th>Glioblastoma was not removed</th>
<th>Surgical removal of Glioblastoma Glioblastoma</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age(years)</td>
<td>60</td>
<td>50</td>
<td>0.03</td>
</tr>
<tr>
<td>Karnofsky score</td>
<td>90%</td>
<td>92%</td>
<td>0.03</td>
</tr>
<tr>
<td>Extent of resection</td>
<td>27.2%</td>
<td>39.1%</td>
<td>0.05</td>
</tr>
<tr>
<td>Biopsy</td>
<td>20%</td>
<td>22%</td>
<td>0.04</td>
</tr>
<tr>
<td>Clinical Intervention</td>
<td>44.9%</td>
<td>69%</td>
<td>0.02</td>
</tr>
<tr>
<td>Reoperate Glioblastoma</td>
<td>3.1%</td>
<td>12.1%</td>
<td>0.02</td>
</tr>
<tr>
<td>Follow-up (months)</td>
<td>12</td>
<td>18</td>
<td>0.02</td>
</tr>
<tr>
<td>Survival (months)</td>
<td>6</td>
<td>12</td>
<td>0.02</td>
</tr>
</tbody>
</table>

CONCLUSION:

Although surgery therapy for individuals with progressing Glioblastoma helps reducesymptoms, the overall survival of these patients is restricted compared to the best current non-operative options. Further study is needed if surgical intervention may help extend post-progressive endurance in Patients.
REFERENCES:


Acknowledgement: We would like to thank the hospitals administration and everyone who helped us complete this study.

Disclaimer: Nil

Conflict of Interest: There is no conflict of interest.

Funding Disclosure: Nil