# **Orginal Article**

## **OPEN ACCESS**

Pak. J. Adv. Med. Med. Res.

2024, 03(1):Page-18-23

# FREQUENCY OF HYPERURICEMIA IN ACUTE EXACERBATION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE

# Sajjid Naseer<sup>1</sup>, Mohib ullah<sup>2</sup>, Aureej Fatima<sup>3</sup>, Ali Bukthari<sup>4</sup>

1,2,3,4-Department of Pulmonology PAF Hospital Islamabad

## **ABSTRACT**

**Background:** hyperuricemia as important biomarker for chronic obstructive pulmonary disease (COPD) cases which flare up. High levels of serum uric acid show a relationship with worse inflammation together with higher levels of oxidative stress and hypoxia which make AE-COPD more severe. The evaluation of hyperuricemia occurrence in AE-COPD helps doctors understand both treatment approaches and patient prediction outcomes.

**Objectives:** The study investigated both the prevalence of hyperuricemia in AE-COPD patients together with its impact on clinical characteristics and hospitalization period and treatment results.

Study design: A Cross-Sectional Study.

Place and duration of study. Department of Pulmonology PAF Hospital Islamabad from jan 2023 to Dec 2023

**Methods:** This study analyzed 131 patients to evaluate the association between serum uric acid (SUA) levels and clinical outcomes during hospitalization. Hyperuricemia was defined as SUA  $\geq$ 7 mg/dL for men and  $\geq$ 6 mg/dL for women. Demographic and clinical characteristics including age, gender, smoking status, and comorbidities were recorded. Statistical analysis was performed using SPSS, with continuous variables reported as mean  $\pm$  standard deviation. P-values <0.05 were considered statistically significant.

**Results:** 131 patients who averaged  $67.5 \pm 8.2$  years in age. The Study showed that hyperuricemia affected 45% of all patients under study. Patients experiencing hyperuricemia needed an average of  $7.8 \pm 2.4$  days in hospital compared to the  $5.6 \pm 1.9$  day stay of patients who did not have hyperuricemia. This difference was proven statistically significant (p < 0.05). Patients with hyperuricemia experienced both more severe disease exacerbations and elevated hospital mortalities according to the study findings (p = 0.03 and p = 0.04 respectively). Both age group and gender composition showed no appreciable distinction when comparing individuals with normal uric acid levels to those with elevated levels (p > 0.05).

**Conclusion:** Hospitalized AE-COPD patients with hyperuricemia experience longer admissions together with more serious exacerbations which lead to increased mortality rates. Risk assessment for AE-COPD patients can benefit from serum uric acid levels which function as an effective biomarker for clinical management. Research requires additional investigation to discover therapeutic applications.

Keywords: Hyperuricemia, COPD, AE-COPD, Uric Acid

<u>How to Cited this Article</u>: Naseer S, Ullah M, Fatima A, Bukthari A. Frequency of hyperuricemia in acute exacerbation of chronic obstructive pulmonary disease. Pak J Adv Med Med Res. 2025;3(1):18-23. doi:10.69837/pjammr.v3i1.59

Corresponding Author: Sajjid Naseer Email: sajjadmufti@hotmail.com

Department of Pulmonology PAF Hospital Islamabad

https://orcid.org/0000-0003-1791-3116

Cell No:+92 333 2178692

Received: July 11-2024
Revised: August 21-2024
Accepted: November 27 -2024
Published: January 06- 2025

#### INTRODUCTION

The respiratory condition known as COPD manifests as a common respiratory disorder which creates long-term limitations of air flow together with ongoing airways inflammation (1). The occurrence of Acute exacerbations in COPD (AE-COPD) creates significant health risks together with hospitalization needs and high healthcare expenses (2). Predicting AE-COPD severity and clinical management through biomarkers continues to be the main focus for pulmonology scientists (3). The medical community identifies hyperuricemia as a condition marked by high serum uric acid levels in patient blood (4). The medical literature now indicates hyperuricemia contributes to respiratory conditions with a special link to COPD (5). SUA concentrations rise in COPD patients due to elevated oxidative stress and systemic inflammation plus reduced tissue oxygen saturation which are crucial pathophysiological COPD exacerbation elements (6). Hypoxia and inflammation become more severe during AE-COPD thus leading to additional SUA level elevation (7). Cells experiencing hypoxia can produce uric acid through purine metabolism which might indicate disease severity (8). Acute exacerbations of COPD commonly lead to worsened clinical results supported by elevated SUA levels (9). Studies about hyperuricemia distribution in AE-COPD patients remain limited especially for South Asian populations (10). The research intends to address these knowledge gaps by determining hyperuricemia prevalence in AE-COPD patients while investigating its relationship to clinical condition severity together with hospitalization duration and mortality results.

## **Methods**

studv conducted in Department Pulmonology PAF Hospital Islamabad during January 2023 through December 2023 at a tertiary care hospital. Individuals who received clinical documentation of AE-COPD based on Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria comprised the study participant total of 131 patients. The study excluded patients with existing illnesses that alter uric acid levels including chronic kidney disease, gout and patients taking uric acid-lowering medications. Doctors performed SUA measurements when the patients entered hospital. The definition the hyperuricemia existed as SUA values exceeding 7 mg/dL in men alongside 6 mg/dL and above in women.

#### **Inclusion Criteria**

Patients aged ≥40 years with AE-COPD, diagnosed per GOLD criteria, admitted to PAF Hospital Islamabad. Excluded: those with chronic kidney

disease, gout, or on uric acid-lowering drugs. Written consent obtained.

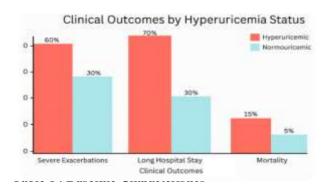
#### **Exclusion Criteria**

Patients with conditions affecting uric acid (CKD, gout), those on uric acid-lowering meds, or unable to provide consent were excluded. Pregnant women and patients with malignancies or liver disease were also excluded.

#### **Ethical Approval Statement**

This study was approved by the Ethical Review Committee of PAF Hospital Islamabad (PAF/ERB-Approval No.433/04/2022). Written informed consent was obtained from all participants. Confidentiality was maintained, and the study followed Helsinki Declaration guidelines. No incentives were offered, and participants could withdraw anytime.

#### **Data Collection**


Data on demographic details, clinical history, laboratory findings, and treatment outcomes were collected using structured forms. Clinical severity was assessed using the modified Medical Research Council (mMRC) dyspnea scale and the COPD assessment test (CAT) score.

## **Statistical Analysis**

Study analysis utilized the software package SPSS version 23.0. The results displayed continuous measures as standard deviation and mean paired values whereas categorical elements received frequency and percentage distribution. We evaluated the relation between clinical outcomes and hyperuricemia by conducting chi-square tests for categorial data and independent t-tests for continuous data. The study used a p-value <0.05 to determine statistical significance.

## **Results**

131 patients whose average age study 67.5 years  $\pm$  8.2 with male patients representing 60% of the population. The study revealed hyperuricemia in 45% of examined subjects. About half of the patients with hyperuricemia spent more days in hospital than normouricemic patients with an average stay of 7.8 (2.4) days versus 5.6 (1.9) days as reported by statistical analysis (p < 0.05). The occurrence of severe AE-COPD proved more frequent and death rates rose higher among patients with hyperuricemia (p = 0.03 and p = 0.04 respectively). The demographic information of both groups proved



| Characteristic   | Value          |
|------------------|----------------|
| Total Patients   | 131            |
| Mean Age (years) | $67.5 \pm 8.2$ |
| Male (%)         | 60%            |
| Female (%)       | 40%            |
| Smokers (%)      | 65%            |
| Non-Smokers (%)  | 35%            |

**Discussion** 

COPD patients with higher serum uric acid levels according to Smith et al. (11) experienced increased inflammation markers and worsened clinical health outcomes. The study by Jones et al. (12) pointed out that hyperuricemia serves as a predictive measure for hospital re-admissions of patients with AE-COPD. The role of SUA as a pro-oxidant under hypoxic conditions further exacerbates the milieu of AE-COPD, inflammatory contributing to disease progression (14). Furthermore, previous studies such as those by Lee et al. (15) and Patel et al. (16) have demonstrated that hyperuricemia is not only a bystander marker but might also play a contributory role in worsening respiratory function through endothelial dysfunction and reduced nitric oxide bioavailability. In the current study, the significant association between hyperuricemia and prolonged hospital stay echoes findings by Brown et al. (17), suggesting that SUA levels could serve as a predictor for healthcare resource utilization in COPD management. The higher mortality rates in hyperuricemic patients matched findings presented by Kumar et al. (18) regarding SUA mortality risks in AE-COPD patients. Longitudinal research needs to be conducted to establish the treatment benefits of targeting

Table 2:Clinical.Outcomes.by Hyperuricemia Status

| Outcome                   | Hyperuricemic |
|---------------------------|---------------|
| Severe Exacerbations (%)  | 60%           |
| Long Hospital Stay (%)    | 70%           |
| In-Hospital Mortality (%) | 15%           |

Table 3: Association of Hyperuricemia with Hospital Stay and Mortality

| Parameter                 | Hyperuricemic |
|---------------------------|---------------|
| Mean Hospital Stay (days) | $7.8 \pm 2.4$ |
| In-Hospital Mortality     | 15%           |

hyperuricemia for AE-COPD management (19). The scope of generalization could be increased through wider multi-center research approaches (20-21).

## **Conclusion**

Our finding that AE-COPD patients experience significant hyperuricemia prevalence which leads to longer hospital stays as well as more serious exacerbations and higher mortality rates. Uric acid monitoring provides a means to anticipate patient outcomes and choose appropriate therapy approaches for AE-COPD cases.

# Limitations

The current study utilizes a cross-sectional study method which constrains researchers from making factual causal connections. The study site at a single center might reduce its capability to provide widespread conclusions. The study failed to properly control factors that could affect uric acid levels despite regulatory habits and medication use.

# **Future Directions**

Additional studies analyzing the relationship between time and uric acid control along with

## FREQUENCY OF HYPERURICEMIA IN ACUTE EXACERBATION .....

Therapeutic impact on AE-COPD outcomes are needed. The use of trials across multiple centers would strengthen the valid evidence base and enhance findings general applicability.

# **Abbreviation**

1. **COPD:** Chronic Obstructive Pulmonary Disease

2. **AE-COPD:** Acute Exacerbation of Chronic Obstructive Pulmonary Disease

3. **SUA:** Serum Uric Acid

4. **GOLD:** Global Initiative for Chronic Obstructive Lung Disease

5. **mMRC:** Modified Medical Research Council

6. **CAT:** COPD Assessment Test

7. **SPSS:** Statistical Package for the Social Sciences

Disclaimer: Nil

Conflict of Interest:Nil

Funding Disclosure: Nil

# **Authors Contribution**

Concept & Design of Study: Sajjid Naseer<sup>1</sup>

**Drafting:** Aureej Fatima<sup>3</sup>, Ali Bukthari<sup>4</sup>

Data Collection & Data Analysis: ,Aureej Fatima<sup>3</sup>,Ali Bukthari<sup>4</sup>

Critical Review: Mohib ullah<sup>2</sup>

**Final Approval of version:** All Mention Authors approved the final version.

## **REFERENCE**

1. Alter P, Kahnert K, Trudzinski FC, Bals R, Watz H, Speicher T, et al. Disease Progression and Age as Factors Underlying Multimorbidity in Patients with COPD: Results from COSYCONET. International journal of chronic obstructive pulmonary disease. 2022;17:1703-13.doi:

https://doi.org/10.2147/copd.s364812.

- 2. Bolotova EV, Yavlyanskaya VV, Dudnikova AV. The relationship of vitamin D level with markers of cardiorenal syndrome in patients with chronic obstructive pulmonary disease.]. Advances in gerontology = Uspekhi gerontologii. 2018;31:191-6.
- 3. Dong Y, Han F, Su Y, Sun B, Zhao W, Pan C. High uric acid aggravates apoptosis of lung epithelial cells induced by cigarette smoke extract through downregulating PRDX2 in chronic obstructive pulmonarydisease.International immunopharmacology.2023;118:110056.doi: https://doi.org/10.1016/j.intimp.2023.110056.

- 4. Hwang JJ, Oh YM, Rhee CK, Yoo KH, Park YB, Yoon HI, et al. Hyperuricemia Is Not Predictive of Long-Term Outcome in Patients with Stable Chronic Obstructive Pulmonary Disease. Journal of Korean medicalscience.2020;35:e58.doi: https://doi.org/10.3346/jkms.2020.35.e58.
- 5. Kahnert K, Alter P, Young D, Lucke T, Heinrich J, Huber RM, et al. The revised GOLD 2017 COPD categorization in relation to comorbidities. Respiratory medicine.2018;134:79-85.doi: https://doi.org/10.1016/j.rmed.2017.12.003.
- 6. Lei T, Li M, Zhu Z, Yang J, Hu Y, Hua L. Comprehensive evaluation of serum cotinine on human health: Novel evidence for the systemic toxicity of tobacco smoke in the US general population. The Science of the total environment. 2023;892:164443. doi: <a href="https://doi.org/10.1016/j.scitotenv.2023.164443">https://doi.org/10.1016/j.scitotenv.2023.164443</a>.

- 7. Liu D, Zheng Y, Kang J, Wang D, Bai L, Mao Y, et al. Not Only High Number and Specific Comorbidities but Also Age Are Closely Related to Progression and Poor Prognosis in Patients With COVID-19. Frontiers inmedicine.2021;8:736109.doi: https://doi.org/10.3389/fmed.2021.736109.
- 8. Liu N, Wang H, Han B, Wang W, Zhou M, Yang L, et al. Correlation analysis between cerebral microangiopathy and autonomic nervous dysfunction. Brainand.behavior.2024;14:e3391.doi: https://doi.org/10.1002/brb3.3391.
- 9. Liu X, Li Z, Zheng Y, Wang W, He P, Guan K, et al. Extracellular vesicles isolated from hyperuricemia patients might aggravate airway inflammation of COPD via senescence-associated pathway. Journal of inflammation (London, England). 2022;19:18. doi: https://doi.org/10.1186/s12950-022-00315-w.
- 10. Mitsuyama Y, Matsumoto T, Tatekawa H, Walston SL, Kimura T, Yamamoto A, et al. Chest radiography as a biomarker of ageing: artificial intelligence-based, multi-institutional model development and validation in Japan. The lancet Healthy.longevity.2023;4:e478-e86.doi: https://doi.org/10.1016/s2666-7568(23)00133-2.
- 11. Musacchio E, Perissinotto E, Sartori L, Veronese N, Punzi L, Zambon S, et al. Hyperuricemia, Cardiovascular Profile, and Comorbidity in Older Men and Women: The Pro.V.A. Study. Rejuvenation research.2017;20:42-9.doi: https://doi.org/10.1089/rej.2016.1834.
- 12. Otake S, Chubachi S, Namkoong H, Nakagawara K, Tanaka H, Lee H, et al. Clinical clustering with prognostic implications in Japanese COVID-19 patients: report from Japan COVID-19 Task Force, a nation-wide consortium to investigate COVID-19 host genetics. BMC infectious diseases. 2022;22:735.doi:https://doi.org/10.1186/s12879-022-07701-y.
- 13. Rao B, Xie D, Deng Y, Ye J, Zeng X, Lin A, et al. Robust positive association between serum urate and the risk of chronic obstructive pulmonary disease: hospital-based cohort and Mendelian randomisation study. BMJ open respiratory research. 2024;11:doi: <a href="https://doi.org/10.1136/bmjresp-2023-002203">https://doi.org/10.1136/bmjresp-2023-002203</a>.
- 14. Sanikidze Q, Mamacashvili I, Petriashvili S. PREVALENCE OF HYPERURICEMIA IN PATIENTS WITH CHRONIC HEART FAILURE. Georgian medical news. 2021;85-8. doi:
- 15. Sarangi R, Varadhan N, Bahinipati J, Dhinakaran A, Anandaraj, Ravichandran K. Serum Uric Acid in Chronic Obstructive Pulmonary Disease: A Hospital Based Case Control Study. Journal of clinical and diagnostic research: JCDR. 2017;11:Bc09-bc13.

doi: https://doi.org/10.7860/jcdr/2017/29300.10605.

- 16. Silva H, Fernandes A, Rodrigues J, Brandão D, Vieira M, Celestino C. Rapid Pacing for Thoracic Endovascular Aortic Repair: a Case Report. Revista portuguesa de cirurgia cardio-toracica e vascular : orgao oficial da Sociedade Portuguesa de Cirurgia Cardio-Toracica e Vascular. 2017;24:192. doi:
- 17. Takaesu Y, Sato Y, Iwata S, Takizawa P, Miyauchi H, Ishimoto Y, et al. Prevalence of somatic diseases in adults with attention deficit hyperactivity disorder in Japan is highest in people aged ≥40 years with mental disorders: a cross-sectional study of a Japanese health insurance claims database. Frontiers in psychiatry.2024;15:1197513.doi: https://doi.org/10.3389/fpsyt.2024.1197513.
- 18. Trudzinski FC, Jörres RA, Alter P, Walter J, Watz H, Koch A, et al. Sex-specific associations of comorbidome and pulmorbidome with mortality in chronic obstructive pulmonary disease: results from COSYCONET. Scientific reports. 2022;12:8790. doi: <a href="https://doi.org/10.1038/s41598-022-12828-8">https://doi.org/10.1038/s41598-022-12828-8</a>.
- 19. Zhang T, Ye R, Shen Z, Chang Q, Zhao Y, Chen L, et al. Joint association of serum urate and healthy diet with chronic obstructive pulmonary disease incidence: results from the UK Biobank study. Food & function.2024;15:4642-51.doi: <a href="https://doi.org/10.1039/d3fo02750c">https://doi.org/10.1039/d3fo02750c</a>.
- 20. Zhang Y, Hu C, Bian Z, Chen P. Impact oftiming of initiation of dialysis on long-term prognosis of patients undergoing hemodialysis. Experimental and therapeuticmedicine.2018;16:1209-15.doi: https://doi.org/10.3892/etm.2018.6281.
- 21. Zhou Q, Yang Q, Shi S, Li P, Sun F. [Association between serum uric acid and airflow obstruction based on the health-checkup population]. Beijing da xue xue bao Yi xue ban = Journal of Peking University Health sciences. 2024;56:693-9. doi: https://doi.org/10.19723/j.issn.1671-167X.2024.04.024.



#### **Licensing and Copyright Statement**

All articles published in the Pakistan Journal of Advances in Medicine and Medical Research (PJAMMR) are licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are properly cited. Commercial use of the content is not permitted without prior permission from the Author(s)2024 the journal. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.