The Frequency Of Tibial Shaft Fractures That Fail To Mend Properly Despite The Use Of Locking Plates.

Syed Hamad Ali Shah Banori1, Mushtaq Hussain2, Asghar Khan3, Shakir Ullah4, Sajjad Ahmad5, Salik Kashif6

1. In charge orthopedic unit DHQ hospital batkhela, Pakistan
2. District Orthopedic Surgeon Dhq Batkhela, Pakistan
3. District orthopedic surgeon Saidu teaching hospital swat, Pakistan
4. Senior registrar, gajju khan medical college Swabi, Pakistan
5. Senior Registrar Saidu group of teaching hospital swat Pakistan
6. Assistant Professor Pediatric Orthopedic surgeon KGMC.HMC, Peshawar

Received: 22 September 2022, Accepted: 12 December 2023, Published: 06 February 2023

ABSTRACT

BACKGROUND: Fractures of the tibia often result from accidents and falls. Treatment for an open fracture Tibia is challenging for orthopedics and plastic surgeons. Several treatment options are available for tibia fractures, including conservative and surgical procedures. Locking plates are a successful therapeutic approach. However, they have problems, including nonunion.

OBJECTIVE: This study aims to determine the frequency of nonunion in tibial shaft locking plates.

Study design: A Case Series

Place and duration of study: Department of Orthopedic DHQ Hospital Batkhala Pakistan. The Period of Study Sixty months (Aug 16, 2020 - Feb 15, 2021)

MATERIALS AND METHODS: All patients hospitalized in our department with tibial shaft fractures who consented to participate were included in this research. The context for Conducting a Case Study The study was conducted at the Department of Orthopedic DHQ Hospital Batkhala Pakistan. The Period of Study Sixty months (Aug 16, 2020 - Feb 15, 2021) It was determined that the fracture needed to be stabilized, and a locking compression plate was used. Patients were contacted frequently utilizing their contact information to lessen the risk of them not following up. The 24th-week visit for nonunion was conducted using X-rays of the tibia shaft Anteroposterior and lateral views as the final evaluation for the research. The patient was instructed to notify the hospital immediately if any complications emerged from the surgery. When returning to the surgical location for follow-up appointments, All surgical operations were subjected to periodic radiological and clinical evaluation.

RESULTS:
A total of 60 patients were included in this research. All patients underwent surgery using a locking compression plate. Of these, 8 had nonunion of the tibial fracture at 24 weeks follow-up. The incidence of nonunion was 13.3%.

CONCLUSION:
The study revealed that the incidence of nonunion in tibial shaft locking plates is 13.3%. This is an important finding for orthopedics surgeons because it highlights the risks of locking plates for tibial shaft fractures. Further research is needed to identify risk factors and strategies to reduce the incidence of nonunion.

KEYWORDS: Nonunion, tibial shaft fracture, locking plates, case series study

Authors Contribution
SHASB. Concept & Design of Study, MH. Drafting, AK. Data Analysis, SU, SA Revisiting Critically, SK.SHASB Final Approval of version

Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License
The Frequency Of Tibial Shaft Fractures That Fail To Mend Properly Despite The Use Of Locking Plates. A Case Series.

INTRODUCTION

Long lower-extremity bone Because the tibia is shallow, fractures are common. Accidents and falls cause tibial fractures. The rising population and changing human behaviours increase accidents and high-energy trauma. Orthopaedic and plastic surgeons struggle with open tibia fractures. Open tibial fractures may be treated with irrigation, external fixation, debridement, intramedullary nailing, and plating. Because conservative therapy often leads to malunion, nonunion, rotational deformity, or joint stiffness, operational treatment has become increasingly common. Surgically treating these fractures is debatable. Options include intramedullary implants, half-pin external fixation, hybrid or thin- wire external fixation, and plate fixation. Other treatments can fix tibial fractures. Plates, k-nails, and external fixation are examples. Therapeutic options for distal tibial fractures include locked plating. Anatomical plating enables optimum reduction, but high fracture energy and soft tissue damage make big incisions inappropriate. Percutaneous plating for tiny wounds and mild tissue injury has improved. In certain studies, the tibial plateaus problems such as nonunion, implant failure, woundinfections, and joint stiffness. Single-surgeon research comparing minimally invasive plating with intramedullary nailing reported 8% and 7% nonunion rates, respectively. After a year of follow-up, 11% of patients with tibial fractures had nonunion, with the average incidence ranging from 9% to 22%. The Ilizarov procedure treats tibial shaft fractures. It’s connected to a clunky ring that causes patient suffering. Locked plating increases the likelihood of nonunion for such fractures. Locked plates are used for tibial fractures. My study seeks to increase fracture union, reduce post-operative complications, and improve patient satisfaction. via quicker healing and shorter hospital stays. This study will determine the dangers of locked plating, especially fracture nonunion, in our patient group. The literature uses higher-quality implants, which are not accessible here. If nonunion is common, this research will be utilized to improve surgical recommendations. This research will enhance orthopaedic physicians’ awareness of nonunion and offer surgical method modifications.

MATERIALS AND METHODS: All patients hospitalized in our department with tibial shaft fractures who consented to participate were included in this research. The context for Conducting a Case Study The study was conducted at the Department of Orthopedic DHQ Hospital Batkhala Pakistan. The Period of Study Sixty months (Aug 16, 2020 - Feb 15, 2021) It was determined that the fracture needed to be stabilized, and a locking compression plate was used. Patients were contacted frequently utilizing their contact information to lessen the risk of them not following up. The 24th-week visit for nonunion was conducted using X-rays of the tibia shaft Anteroposterior and lateral views as the final evaluation for the research. The patient was instructed to notify the hospital immediately if any complications emerged from the surgery. When returning to the surgical location for follow-up appointments, All surgical operations were subjected to periodic radiological and clinical evaluation.

DATA ANALYSIS PROCEDURE

The collected data were entered into the computer using SPSS version 2.4 for analysis. Descriptive statistics were used to calculate means ± standard deviation for numerical variables, i.e., age. For categorical variables like gender, type of fractures and nonunion, frequencies and percentages were calculated. The nonunion stratified all symptoms to diagnose among the age, gender and A.O. type to see the effect modification. The chi-square test was used to assess for any significant difference between categorical variables. P-value ≤ 0.05 was considered statistically significant. All results were presented in the form of tables and figures.

EXAMINING PHYSICALLY

All people in a high-energy accident should be examined according to the guidelines set out by the Royal Australasian College of Surgeons’ Road Trauma Committee/Emergency Management of Severe Trauma. The primary survey includes the ABCs (i.e., airway, breathing, circulation). The Glasgow Coma Scale (GCS) score determines any head injury component’s severity. The secondary survey should include the chest, abdomen, pelvis, upper limbs, and contralateral lower limbs for associated injuries. Other fractures, such as a femur fracture leading to a floating knee, or joint injuries, such as knee dislocations, may also affect the ipsilateral limb. If the mechanism of injury (e.g., a pedestrian hit by a car) suggests it, look for signs of crush injury. External signs of these injuries may be minimal.

COMPLICATIONS

syndrome. A strong index of suspicion and vigorous surgical therapy is necessary for this condition. Reduced pulses may not become apparent until much later in the procedure, so always keep this in mind. Pressure monitors are now often recommended by surgeons as a tool for patients to consider while making treatment choices. More than 25-30 mm Hg of compartment pressure is cause for worry and should be brought up with a physician. The treatment for compartment syndrome is fasciotomy.

PJAMMR-VOL-01-Issue-01 Page-25-6
MANAGEMENT FRACTURE REPAIR

Intramedullary nailing is the best choice for Gustilo-Anderson fractures of type I, II, and III. Type IIIB fractures may be treated with unreamed nails as well. Solid-core nails have the lowest incidence of infection. According to Marecek et al., individuals with open tibia fractures who had medullary nailing of the tibia by suprapatellar or infrapatellar methods had identical risks of developing knee sepsis.

APPROACH CONSIDERATIONS

Fig No. 1: Radiograph demonstrating a displaced tibial shaft fracture with associated fibula fracture

Fig no. 2 open tibial shaft fracture.

Routine preoperative blood tests are ordered. Periodic limb, chest, and cervical spine radiographs are ordered.

RESULTS:

A total of 60 patients were included in this research. All patients underwent surgery using a locking compression plate. Of these, 8 had nonunion of the tibial fracture at 24 weeks follow-up. The incidence of nonunion was 13.3%.

Figure 03: exposed tibial shaft fracture external bracing. You can see the fasciotomy cut on the left thigh's opposite side.

Figure 04: image from the front to the back showing an intramedullary spike fixated tibial shaft fracture. Additionally, the typically presentfibular fracture is visible. (Fig 03) (Fig 04)
DISCUSSION

Lower leg bone tibia. Surface tibial fractures are prevalent Accidents and fall cause most tibial fractures. As the population expands and habits change, accidents and high-energy trauma rise. Orthopaedic and plastic surgeons must manage open tibia fractures. Open tibial fractures may be treated with irrigation, external fixation, debridement, intramedullary nailing, and plating. Conservative treatment of these fractures often results in malunion, nonunion, rotational deformity, or stiffness of neighbouring joints. Hence surgery therapy is now preferred. The optimal surgery for these fractures is still being determined. Questionable. Intramedullary implants, half-pin, hybrid, thin-wire external fixation, or plate fixation are alternatives. There are several tibial fracture treatments. Placing, k- nail, and external fixation are examples. Locked plating is more prevalent for distal tibial fractures. High-energy fractures and injured soft tissue render big incisions unsuitable for reduction, even anatomical leaf. Minimally invasive percutaneous plating seeks tiny incisions and little soft tissue damage. Despite being the recommended therapy, the tibial plate may cause nonunion, implant failure, wound infections, and joint stiffness. Single-surgeon research comparing minimally invasive plates to intramedullary nailing reported a nonunion rate of 8% for scale and 7% for nailing; in our analysis, 15.6% of patients suffered nonunion. Table 5 In another research, 11% of tibial fracture patients suffered nonunion after a year of follow-up, with the average incidence ranging from 9% to 22%; in our study, 15.6% of patients experienced non-union. Table 6 Ilizarov method treats tibial shaft fractures. Heavy ring increases patient pain. Locked plating for such fractures increases nonunion rates. We've started employing...
locking tibial plates. My research intends to evaluate whether it increases fracture union frequency, post-op complications, and patient satisfaction due to rapid healing and a shorter hospital stay. This study will determine whether plating problems, including fracture nonunion, in our patient group. Literature data is based on higher-quality implants, which are not accessible in the U.S. If nonunion is common, this research will be utilized to improve ward and surgical recommendations. This research will educate orthopaedic surgeons about nonunion prevalence and give surgical procedure suggestions.

CONCLUSION

We Found 15 (9.61%) Nonunions In Tibial Shaft Fracture Locking Plates During Our Investigation. According To Our Clinical Follow-Up, Soft Tissue Problems Must Be Kept In Mind. TSF Surgery With A Single Lateral Approach And Locking Plate Takes Less Time And Requires Less Time In The Hospital.

REFERENCES


Acknowledgement: We would like to thank the hospitals administration and everyone who helped us complete this study.
Disclaimer: Nil
Conflict of Interest: There is no conflict of interest.
Funding Disclosure: Nil